Identification of Fracture Stimulation Stage and Well Interference

Jay Williams, B.Sc. Eng Roke Technologies

Sub-surface Evaluation Specialists

Agenda

- Review Objectives
- HZ Fracturing Development Risks
- Marcellus Formation
- Methodology
- Data Acquisition
- Operational Summary
- Conclusions

Primary Objective: Find Optimum Well Spacing Secondary Objective: Find Optimum Frac Stage

Development Risks

- Sanding off guns
- Stuck in hole
- Large variance breakdown pressures
- Operational efficiency improvement
- Optimize single biggest cost

Marcellus Development Timeline

- 19th Century the outcrops were mined for coal
- Vertical wells 50+ years
- 2003 Marcellus Discovery

PA – Range Resources.

2010 Range Resources Q3 Production
 190 MMCFDE

164 HZ wells

Why the Marcellus?

- Proximity to markets
- Large areal extent

Up to 95,000 square miles (60 million acres) 50 to 200 feet thick

- Horizontal drilling and fracturing
- Increasing reserve estimates

Marcellus Reserve Estimates

• 2002 USGS

Estimated 1.9 TCF recoverable

• 2006 Engelder and Lash

Estimated 10 TCF recoverable From 490 TCF GIP using 10% RF

2008 Engelder and Lash

Estimated 1997 TCF recoverable From 4359 TCF GIP* using 30 % RF *Assume the entire Marcellus is productive

• 2009 US DOE

Estimated, and 262 TCF recoverable From 1500 TCF GIP using 17.5 % RF

Stratigraphy

Project Timeline Summary

Drill and case 2 HZ wells

750 ft spacing

- 1st Quad Neutron run on each well
- Fracture stimulation 1 well
- 2nd Quad Neutron run on each well

Non-radioactive Frac Tagging

CB4

- Neutron Neutron
- Neutron Gamma

Sand Neutron Neutron

Neutron Gamma

First Log Evaluation

• Primary Objective:

Neutron Neutron and Neutron Gamma Baseline

• Secondary Objective:

Lithology, porosity and saturation

Identify geological facies along HZ

Identify areas of high reservoir quality

Fracture Stimulation

- Pump down plug and perf
- 400 ton slickwater fracs
- 280 ft spacing

Alternating CB4 **____** and Sand **____** tag

~7 limited entry perfs per stage
 280 ft / 7 = 40 ft

Well Interference

Well Interference Summary

Well interference confirmed
 Large Sand tag – toe

CB4 and Sand – throughout well

• Frac propagation along structure

Stage Interference

Stage Interference Summary

- Stage interference confirmed
- Over 100 ft at stage one
- Multiple stage inference confirmed

Data Acquisition / Analysis Costs

 \$85k for two wells – 4 logging runs **Quad Neutron** Frac Tag Analysis Conveyance 2 plug pump down & 2 coil Conveyance reduced with drilling pump down

Conclusions

- Optimize fracture stimulations
 Maximize resource recovery
 Minimize biggest cost
- Identify faults / structure influence frac

Acknowledgements

Hermann Kramer

Roke Technologies

• Tiffiny Yaxley

Roke Technologies

Joe Sites

Horizontal Wireline

Questions?

• Jay Williams

VP Americas, Onshore

Roke Technologies

jay@roke.ca

Quad Neutron: Open Hole Alternative

Additional Slides

Successful Hz Frac Stimulations

Increase production and lower cost
 Optimize Well Spacing / Frac Stage Spacing

Open Hole vs Quad Neutron

Conventional Open Hole

- Lithology
 - Natural Gamma Ray / PE
- Porosity
 - Neutron
 - Density
 - Introduced gamma
- Saturation
 - Resistivity
 - Archie's Equation

Quad Neutron (Thru Pipe)

- Lithology Quad Clay / CE (Bulk Den)
- Porosity

 Neutron Neutron
 Neutron Gamma
 Induced gamma
- Saturation
 Quad Liquid
 Roke's Equation

Options for acquiring horizontal data

Quad Through Pipe

Through Composite

Large diameter pipe. Mechanical integrity.

Open Hole - Through Bit

Cannot reciprocate or rotate . Arms and centralizers can increase sticking.

Open Hole - Pipe Conveyed

Cannot reciprocate. Cannot rotate Arms and centralizers can increase sticking. Long time in OH.

Open Hole - LWD

Junk slot area. Large tool diameter. In hole longest. Tool joint failure. Abrasive wear. Drilling shock & vibration. High tool cost.

Find Oil

 Quad Neutron Open Hole Thru Pipe Exploration
 Completion
 Production
 Late Stage Due Diligence

"Swiss Army Knife"

Quad Neutron Dual Physics

- Minimizes Porosity Error
- Maximizes Fluid Sensitivity

$$2 + ^{-}2 = 0$$

 $|2| + |^{-}2| = 4$

Quad Neutron Physics

- Two types of neutron interaction: neutron-gamma (high energy) neutron-thermal neutron
- Combination of the two physics: Maximizes porosity accuracy Maximizes fluid sensitivity
- Same source

reduces statistical error

Quad Neutron – Data Acquistion

Horizontal Wells

Pump Down Drilling Rig Deployment

During Wiper Trip

Coil Tubing / E-Coil Deployment

Tractor Deployment

CoRod Deployment

Jointed Pipe Deployment

Thermal Neutron Nuclides

Parent Nuclide	Abundance (percent)	Daughter Nuclide	Counts per second per gram after 2 min irradiation ¹
²⁷ Al	100	²⁸ AI	27000
³⁷ Cl	24.5	³⁸ Cl	810
⁴¹ K	6.88	⁴² K	190
²⁶ Mg	11.2	²⁷ Mg	310
⁵⁵ Mn	100	⁵⁶ Mn	12000
²³ Na	100	²⁴ Na	210
³⁰ Si	3.09	³¹ Si	6

¹ Based on 10 percent counting efficiency, a flux of 10⁸ n/cm² sec, and a normal abundance of nuclides. (After Senftle and Hoyt (1966), with additional data from Goldman and Stehn (1961))